Markenbezeichnung: | PRMCAS |
Modellnummer: | 86HS1200-Serie |
Mindestbestellmenge: | ≥50PCS |
Verpackungsdetails: | 50 Stück pro Karton |
Zahlungsbedingungen: | T/T auf Konto der Gesellschaft |
1. Produktübersicht
Ein Schrittmotor ist ein Motor, der das elektrische Impulssignal in die entsprechende Winkelverschiebung umwandelt.und die Drehzahl ist proportional zur Input-ImpulsfrequenzDaher wird der Schrittmotor auch als Pulsmotor bezeichnet.
Der größte Unterschied zwischen dem Schrittmotor und anderen Steuermotoren besteht darin, dass er digitale Steuersignale (Impulse) empfängt und entsprechend in Winkelverschiebungen umwandelt.Geben Sie ein Pulssignal ein, um eine angegebene Positionssteigerung zu erhaltenIm Vergleich zum herkömmlichen Gleichstromsteuerungssystem, einem sogenannten inkrementellen Positionssteuerungssystem, werden Komplexität und Kosten des Schrittsystems erheblich reduziert.Die Winkelverschiebung des Schrittmotors ist strikt proportional zur Anzahl der EingabeimpulseDurch die Steuerung der Pulsfrequenz und der Pulsmenge können die Drehzahl und die Position der Motorwelle genau gesteuert werden.
Gleichzeitig hat Kaifull viele Probleme der traditionellen Schrittfahrer gelöst, die neuesten patentierten Technologien kaufen.und sie schätzen unseren Schrittmotor und Antriebe sehr sehr.
Derzeit werden Schrittmotoren im Bereich der Bewegungssteuerung weit verbreitet.
Das Drehmoment des Schrittmotors wird mit zunehmender Drehzahl abnehmen.
Wenn der Schrittmotor dreht, bildet die Induktivität der einzelnen Phasenwicklung des Motors eine umgekehrte elektromotorische Kraft. Je höher die Geschwindigkeit, desto größer die umgekehrte elektromotorische Kraft.In diesem Fall, nimmt der Phasenstrom des Motors mit zunehmender Frequenz (oder Drehzahl) ab, was zu einem Rückgang des Drehmoments führt.
Der Schrittmotor kann bei niedrigen Drehzahlen gut funktionieren, aber wenn er eine bestimmte Geschwindigkeit überschreitet, kann er nicht starten oder es kann ein starkes Pfeifen geben.
Der Schrittmotor verfügt über einen technischen Parameter: Startfrequenz ohne Belastung, d. h. die Impulsfrequenz, bei der der Schrittmotor normal unter Belastungsfreiheit starten kann.Wenn die Pulsfrequenz höher ist als dieser Wert, kann der Motor nicht normal starten und kann Schrittverlust oder Rotorverstopfung auftreten. Bei Belastung sollte die Startfrequenz niedriger sein.Es sollte einen Beschleunigungsprozess in der Pulsfrequenz geben., d. h. die Startfrequenz sollte niedriger sein,und dann sollte eine bestimmte Beschleunigung angewendet werden, um die gewünschte hohe Frequenz zu erreichen (die Drehzahl des Motors sollte von niedriger Geschwindigkeit auf hohe Geschwindigkeit steigen).
Wie kann man die Schwingungen und Geräusche von Zwei-Phasen-Hybrid-Schrittmotoren beim Niedriggeschwindigkeitsbetrieb überwinden?
Die inhärenten Nachteile von Schrittmotoren sind hohe Vibrationen und Lärm bei niedriger Drehgeschwindigkeit, die im Allgemeinen durch folgende Lösungen überwunden werden können:
A. Wenn der Schrittmotor genau in der Resonanzzone arbeitet, kann eine mechanische Übertragung wie die Änderung des Reduktionsverhältnisses die Resonanzzone vermeiden.
B. Die am häufigsten verwendete und bequeme Methode besteht darin, Treiber mit Unterteilungsfunktionen zu verwenden.
C. Ersetzen Sie durch einen Schrittmotor mit einem kleineren Schrittwinkel, z. B. einen Dreiphasen- oder Fünfphasen-Schrittmotor.
Kaifull PRMCAS Hybrid-Schrittmotoren Anwendungen
Kaifull-Hybrid-Schrittmotoren werden hauptsächlich in digitalen Steuerungssystemen mit hoher Genauigkeit und zuverlässigem Betrieb eingesetzt.Auch eine geschlossene Steuerung ist möglich.. Schrittmotoren sind in digitalen Steuerungssystemen, wie z. B. in digital-analog-Konvertierungsgeräten, CNC-Werkzeugmaschinen, Computerperipheriegeräten, automatischen Aufzeichnern, Uhren usw. weit verbreitet.,Sie wurden auch in Produktionslinien für industrielle Automatisierung, Druckmaschinen usw. eingesetzt.
Die Anwendungsmöglichkeiten von Kaifull-Schrittmotoren sind sehr breit und hier einige Anwendungsbeispiele:
Industriezweig:Schrittmotoren werden in der Automobilinstrumentation, in der Maschinentechnik, in der Roboterherstellung, bei der Inspektion und im Prozessfluss eingesetzt.
Sicherheitsfeld: Für Überwachungsprodukte wie PAN/ZOOM/TILT für Überwachungskameras verwendet.
Medizinischer Bereich; Hydraulikpumpen, Beatmungsgeräte und Blutanalysatoren, die in medizinischen Scannern, Probenahmen, digitaler Mundfotografie verwendet werden.
Im Bereich der Unterhaltungselektronik, wird in verschiedenen Phasen der Produktion von elektronischen Produkten verwendet, z. B. beim Drucken von Lötpaste, SMT-Platzierung, Rückflusslöten, visueller Inspektion, Herstellung von Kabeln mit Endgeräten,Verteilermaschinen, Laminationsmaschinen, 3D-Drucker usw.
Präzisionsgeräte und -instrumente: verwendet in Geldautomaten, Tintenstrahldruckern, Gravurmaschinen, Foto-Maschinen, Sprühmalerausrüstung, Computerperipheriegeräten und großen Datenspeichern, Präzisionsinstrumenten,Informationssysteme für die industrielle Steuerung, Büroautomation, Roboter und andere Bereiche, besonders geeignet für Anwendungen mit reibungslosem Betrieb, geringen Geräuschen, schneller Reaktion, langer Lebensdauer und hohem Leistungsmoment.
Textilmaschinen und Apparate: Es wird weit verbreitet in Textilmaschinen wie z. B. computergestützten Stickmaschinen eingesetzt.geringer Betriebslärm, stabiler Betrieb, gute Kontrollleistung und geringe Gesamtkosten.
Flachmobile Geräte: zum Beispiel Laserschneidmaschinen, Drucker, Scanner usw.
Messgeräte wie hochpräzise 3D-Scanner, optische Messgeräte usw.
Medizinische Ausrüstung: für medizinische und chirurgische Instrumente usw. verwendet
Kameraobjektiv. zur Fokussierung und Bewegung optischer Geräte usw. verwendet
Diese Anwendungsfälle erfordern in der Regel, dass Schrittmotoren Eigenschaften wie hohe Präzision, geringen Lärm, schnelle Reaktion und lange Lebensdauer aufweisen, um die Positionierung, Steuerung,und Leistungsanforderungen verschiedener Branchen.
2Allgemeine technische Spezifikationen für Hybrid-Schrittmotoren
Schrittwinkel | 1.8° (2 Phase) |
Schrittwinkelgenauigkeit | 00,09° |
Typ der Welle | Einzelwelle, Durchmesser 14,0 mm oder 12,7 mm (anpassbar) |
Temperaturanstieg | Weniger als 80 °C (Nennstrom) |
Max. Oberflächentemperaturen | Maximal zulässig 100°C |
Umgebungstemperatur | -20 °C ~ +50 °C |
Isolationsgrad | 100 MΩ Min. , Klasse B |
Dielektrische Festigkeit | 500 VAC für 1 Minute |
Max. Achsbelastung | 60N |
Max. Radiallast | 320 N (20 mm von der Montageoberfläche entfernt) |
Zertifikate | Rohs, CE, CCC (nach Kundenbedarf) |
3. Hybrid-Schrittmotor Leistungsdatenblatt
Modell | Strom | Widerstand | Induktivität | Haltemoment | ZurückhaltenDrehmoment | Rotor Trägheit | Bi-/Einpolar | Gewicht | Länge |
A/Ø | Ohm/Ø | mH/Ø | N.m. | N.cm | g.cm2 | # von Leads | Weigerung | mm | |
86HS1200-6004S-158-12.7K | 6.0 | 0.85 | 10.1 | 12 | 25 | 5600 | Bi (4) | 5.5 | 158.5 |
86HS1200-3004S-158-12.7K | 3.0 | 3.4 | 40.4 | 12 | 25 | 5600 | Bi (4) | 5.5 | 158.5 |
4Mechanische Abmessungen (in mm)
5. Kabeldiagramm
6. Drehmomentgeschwindigkeitskurven
Markenbezeichnung: | PRMCAS |
Modellnummer: | 86HS1200-Serie |
Mindestbestellmenge: | ≥50PCS |
Verpackungsdetails: | 50 Stück pro Karton |
Zahlungsbedingungen: | T/T auf Konto der Gesellschaft |
1. Produktübersicht
Ein Schrittmotor ist ein Motor, der das elektrische Impulssignal in die entsprechende Winkelverschiebung umwandelt.und die Drehzahl ist proportional zur Input-ImpulsfrequenzDaher wird der Schrittmotor auch als Pulsmotor bezeichnet.
Der größte Unterschied zwischen dem Schrittmotor und anderen Steuermotoren besteht darin, dass er digitale Steuersignale (Impulse) empfängt und entsprechend in Winkelverschiebungen umwandelt.Geben Sie ein Pulssignal ein, um eine angegebene Positionssteigerung zu erhaltenIm Vergleich zum herkömmlichen Gleichstromsteuerungssystem, einem sogenannten inkrementellen Positionssteuerungssystem, werden Komplexität und Kosten des Schrittsystems erheblich reduziert.Die Winkelverschiebung des Schrittmotors ist strikt proportional zur Anzahl der EingabeimpulseDurch die Steuerung der Pulsfrequenz und der Pulsmenge können die Drehzahl und die Position der Motorwelle genau gesteuert werden.
Gleichzeitig hat Kaifull viele Probleme der traditionellen Schrittfahrer gelöst, die neuesten patentierten Technologien kaufen.und sie schätzen unseren Schrittmotor und Antriebe sehr sehr.
Derzeit werden Schrittmotoren im Bereich der Bewegungssteuerung weit verbreitet.
Das Drehmoment des Schrittmotors wird mit zunehmender Drehzahl abnehmen.
Wenn der Schrittmotor dreht, bildet die Induktivität der einzelnen Phasenwicklung des Motors eine umgekehrte elektromotorische Kraft. Je höher die Geschwindigkeit, desto größer die umgekehrte elektromotorische Kraft.In diesem Fall, nimmt der Phasenstrom des Motors mit zunehmender Frequenz (oder Drehzahl) ab, was zu einem Rückgang des Drehmoments führt.
Der Schrittmotor kann bei niedrigen Drehzahlen gut funktionieren, aber wenn er eine bestimmte Geschwindigkeit überschreitet, kann er nicht starten oder es kann ein starkes Pfeifen geben.
Der Schrittmotor verfügt über einen technischen Parameter: Startfrequenz ohne Belastung, d. h. die Impulsfrequenz, bei der der Schrittmotor normal unter Belastungsfreiheit starten kann.Wenn die Pulsfrequenz höher ist als dieser Wert, kann der Motor nicht normal starten und kann Schrittverlust oder Rotorverstopfung auftreten. Bei Belastung sollte die Startfrequenz niedriger sein.Es sollte einen Beschleunigungsprozess in der Pulsfrequenz geben., d. h. die Startfrequenz sollte niedriger sein,und dann sollte eine bestimmte Beschleunigung angewendet werden, um die gewünschte hohe Frequenz zu erreichen (die Drehzahl des Motors sollte von niedriger Geschwindigkeit auf hohe Geschwindigkeit steigen).
Wie kann man die Schwingungen und Geräusche von Zwei-Phasen-Hybrid-Schrittmotoren beim Niedriggeschwindigkeitsbetrieb überwinden?
Die inhärenten Nachteile von Schrittmotoren sind hohe Vibrationen und Lärm bei niedriger Drehgeschwindigkeit, die im Allgemeinen durch folgende Lösungen überwunden werden können:
A. Wenn der Schrittmotor genau in der Resonanzzone arbeitet, kann eine mechanische Übertragung wie die Änderung des Reduktionsverhältnisses die Resonanzzone vermeiden.
B. Die am häufigsten verwendete und bequeme Methode besteht darin, Treiber mit Unterteilungsfunktionen zu verwenden.
C. Ersetzen Sie durch einen Schrittmotor mit einem kleineren Schrittwinkel, z. B. einen Dreiphasen- oder Fünfphasen-Schrittmotor.
Kaifull PRMCAS Hybrid-Schrittmotoren Anwendungen
Kaifull-Hybrid-Schrittmotoren werden hauptsächlich in digitalen Steuerungssystemen mit hoher Genauigkeit und zuverlässigem Betrieb eingesetzt.Auch eine geschlossene Steuerung ist möglich.. Schrittmotoren sind in digitalen Steuerungssystemen, wie z. B. in digital-analog-Konvertierungsgeräten, CNC-Werkzeugmaschinen, Computerperipheriegeräten, automatischen Aufzeichnern, Uhren usw. weit verbreitet.,Sie wurden auch in Produktionslinien für industrielle Automatisierung, Druckmaschinen usw. eingesetzt.
Die Anwendungsmöglichkeiten von Kaifull-Schrittmotoren sind sehr breit und hier einige Anwendungsbeispiele:
Industriezweig:Schrittmotoren werden in der Automobilinstrumentation, in der Maschinentechnik, in der Roboterherstellung, bei der Inspektion und im Prozessfluss eingesetzt.
Sicherheitsfeld: Für Überwachungsprodukte wie PAN/ZOOM/TILT für Überwachungskameras verwendet.
Medizinischer Bereich; Hydraulikpumpen, Beatmungsgeräte und Blutanalysatoren, die in medizinischen Scannern, Probenahmen, digitaler Mundfotografie verwendet werden.
Im Bereich der Unterhaltungselektronik, wird in verschiedenen Phasen der Produktion von elektronischen Produkten verwendet, z. B. beim Drucken von Lötpaste, SMT-Platzierung, Rückflusslöten, visueller Inspektion, Herstellung von Kabeln mit Endgeräten,Verteilermaschinen, Laminationsmaschinen, 3D-Drucker usw.
Präzisionsgeräte und -instrumente: verwendet in Geldautomaten, Tintenstrahldruckern, Gravurmaschinen, Foto-Maschinen, Sprühmalerausrüstung, Computerperipheriegeräten und großen Datenspeichern, Präzisionsinstrumenten,Informationssysteme für die industrielle Steuerung, Büroautomation, Roboter und andere Bereiche, besonders geeignet für Anwendungen mit reibungslosem Betrieb, geringen Geräuschen, schneller Reaktion, langer Lebensdauer und hohem Leistungsmoment.
Textilmaschinen und Apparate: Es wird weit verbreitet in Textilmaschinen wie z. B. computergestützten Stickmaschinen eingesetzt.geringer Betriebslärm, stabiler Betrieb, gute Kontrollleistung und geringe Gesamtkosten.
Flachmobile Geräte: zum Beispiel Laserschneidmaschinen, Drucker, Scanner usw.
Messgeräte wie hochpräzise 3D-Scanner, optische Messgeräte usw.
Medizinische Ausrüstung: für medizinische und chirurgische Instrumente usw. verwendet
Kameraobjektiv. zur Fokussierung und Bewegung optischer Geräte usw. verwendet
Diese Anwendungsfälle erfordern in der Regel, dass Schrittmotoren Eigenschaften wie hohe Präzision, geringen Lärm, schnelle Reaktion und lange Lebensdauer aufweisen, um die Positionierung, Steuerung,und Leistungsanforderungen verschiedener Branchen.
2Allgemeine technische Spezifikationen für Hybrid-Schrittmotoren
Schrittwinkel | 1.8° (2 Phase) |
Schrittwinkelgenauigkeit | 00,09° |
Typ der Welle | Einzelwelle, Durchmesser 14,0 mm oder 12,7 mm (anpassbar) |
Temperaturanstieg | Weniger als 80 °C (Nennstrom) |
Max. Oberflächentemperaturen | Maximal zulässig 100°C |
Umgebungstemperatur | -20 °C ~ +50 °C |
Isolationsgrad | 100 MΩ Min. , Klasse B |
Dielektrische Festigkeit | 500 VAC für 1 Minute |
Max. Achsbelastung | 60N |
Max. Radiallast | 320 N (20 mm von der Montageoberfläche entfernt) |
Zertifikate | Rohs, CE, CCC (nach Kundenbedarf) |
3. Hybrid-Schrittmotor Leistungsdatenblatt
Modell | Strom | Widerstand | Induktivität | Haltemoment | ZurückhaltenDrehmoment | Rotor Trägheit | Bi-/Einpolar | Gewicht | Länge |
A/Ø | Ohm/Ø | mH/Ø | N.m. | N.cm | g.cm2 | # von Leads | Weigerung | mm | |
86HS1200-6004S-158-12.7K | 6.0 | 0.85 | 10.1 | 12 | 25 | 5600 | Bi (4) | 5.5 | 158.5 |
86HS1200-3004S-158-12.7K | 3.0 | 3.4 | 40.4 | 12 | 25 | 5600 | Bi (4) | 5.5 | 158.5 |
4Mechanische Abmessungen (in mm)
5. Kabeldiagramm
6. Drehmomentgeschwindigkeitskurven